41.1.2 problem Ex. 6(i), page 257

Internal problem ID [6815]
Book : A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan Co. ltd. New York, reprinted 1956
Section : Chapter VI. Note I. Integration of linear equations in series by the method of Frobenius. page 243
Problem number : Ex. 6(i), page 257
Date solved : Monday, January 27, 2025 at 02:31:03 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (1+x \right ) y^{\prime \prime }-\left (2 x +1\right ) \left (-y+x y^{\prime }\right )&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 28

Order:=6; 
dsolve(x^2*(1+x)*diff(y(x),x$2)-(1+2*x)*(x*diff(y(x),x)-y(x))=0,y(x),type='series',x=0);
 
\[ y = x \left (\left (c_2 \ln \left (x \right )+c_1 \right ) \left (1+\operatorname {O}\left (x^{6}\right )\right )+\left (x +\operatorname {O}\left (x^{6}\right )\right ) c_2 \right ) \]

Solution by Mathematica

Time used: 0.010 (sec). Leaf size: 2760

AsymptoticDSolveValue[x^2*(1+x)*D[y[x],{x,2}]-(1+2*x)*(x*D[y[x],x]+y[x])==0,y[x],{x,0,"6"-1}]
 

Too large to display