42.1.2 problem 3.6 (a)

Internal problem ID [6824]
Book : Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag. Springer October 29, 1999
Section : Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS. page 136
Problem number : 3.6 (a)
Date solved : Monday, January 27, 2025 at 02:31:13 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-2 x y^{\prime }+8 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=4\\ y^{\prime }\left (0\right )&=0 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 14

Order:=6; 
dsolve([diff(y(x),x$2)-2*x*diff(y(x),x)+8*y(x)=0,y(0) = 4, D(y)(0) = 0],y(x),type='series',x=0);
 
\[ y = 4-16 x^{2}+\frac {16}{3} x^{4}+\operatorname {O}\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 17

AsymptoticDSolveValue[{D[y[x],{x,2}]-2*x*D[y[x],x]+8*y[x]==0,{y[0]==4,Derivative[1][y][0] ==0}},y[x],{x,0,"6"-1}]
 
\[ y(x)\to \frac {16 x^4}{3}-16 x^2+4 \]