42.1.5 problem 3.6 (d)

Internal problem ID [6827]
Book : Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag. Springer October 29, 1999
Section : Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS. page 136
Problem number : 3.6 (d)
Date solved : Monday, January 27, 2025 at 02:31:15 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }&=\left (x -1\right ) y \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1\\ y^{\prime }\left (0\right )&=0 \end{align*}

Solution by Maple

Time used: 0.000 (sec). Leaf size: 18

Order:=6; 
dsolve([diff(y(x),x$2)=(x-1)*y(x),y(0) = 1, D(y)(0) = 0],y(x),type='series',x=0);
 
\[ y = 1-\frac {1}{2} x^{2}+\frac {1}{6} x^{3}+\frac {1}{24} x^{4}-\frac {1}{30} x^{5}+\operatorname {O}\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 33

AsymptoticDSolveValue[{D[y[x],{x,2}]==(x-1)*y[x],{y[0]==1,Derivative[1][y][0] ==0}},y[x],{x,0,"6"-1}]
 
\[ y(x)\to -\frac {x^5}{30}+\frac {x^4}{24}+\frac {x^3}{6}-\frac {x^2}{2}+1 \]