42.1.9 problem 3.24 (d)

Internal problem ID [6831]
Book : Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag. Springer October 29, 1999
Section : Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS. page 136
Problem number : 3.24 (d)
Date solved : Monday, January 27, 2025 at 02:31:20 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x \left (1-x \right ) y^{\prime \prime }-3 x y^{\prime }-y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 60

Order:=6; 
dsolve(x*(1-x)*diff(y(x),x$2)-3*x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);
 
\[ y = \ln \left (x \right ) \left (x +2 x^{2}+3 x^{3}+4 x^{4}+5 x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_2 +c_1 x \left (1+2 x +3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (1+3 x +5 x^{2}+7 x^{3}+9 x^{4}+11 x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_2 \]

Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 63

AsymptoticDSolveValue[x*(1-x)*D[y[x],{x,2}]-3*x*D[y[x],x]-y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (x^4+x^3+x^2+\left (4 x^3+3 x^2+2 x+1\right ) x \log (x)+x+1\right )+c_2 \left (5 x^5+4 x^4+3 x^3+2 x^2+x\right ) \]