42.1.18 problem 3.26

Internal problem ID [6840]
Book : Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag. Springer October 29, 1999
Section : Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS. page 136
Problem number : 3.26
Date solved : Monday, January 27, 2025 at 02:31:31 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 38

Order:=6; 
dsolve((x-1)*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {1}{2} x^{2}+\frac {1}{6} x^{3}+\frac {1}{24} x^{4}+\frac {1}{120} x^{5}\right ) y \left (0\right )+y^{\prime }\left (0\right ) x +O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 41

AsymptoticDSolveValue[(x-1)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {x^5}{120}+\frac {x^4}{24}+\frac {x^3}{6}+\frac {x^2}{2}+1\right )+c_2 x \]