Internal
problem
ID
[6464]
Book
:
Engineering
Mathematics.
By
K.
A.
Stroud.
5th
edition.
Industrial
press
Inc.
NY.
2001
Section
:
Program
24.
First
order
differential
equations.
Further
problems
24.
page
1068
Problem
number
:
35
Date
solved
:
Wednesday, March 05, 2025 at 12:48:55 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]
With initial conditions
ode:=x^2*diff(y(x),x) = y(x)^2-x*y(x)*diff(y(x),x); ic:=y(1) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=x^2*D[y[x],x]==y[x]^2-x*y[x]*D[y[x],x]; ic={y[1]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) + x*y(x)*Derivative(y(x), x) - y(x)**2,0) ics = {y(1): 1} dsolve(ode,func=y(x),ics=ics)