Internal
problem
ID
[6469]
Book
:
Engineering
Mathematics.
By
K.
A.
Stroud.
5th
edition.
Industrial
press
Inc.
NY.
2001
Section
:
Program
24.
First
order
differential
equations.
Further
problems
24.
page
1068
Problem
number
:
40
Date
solved
:
Wednesday, March 05, 2025 at 12:51:10 AM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
With initial conditions
ode:=diff(y(x),x) = (x-2*y(x)+1)/(2*x-4*y(x)); ic:=y(1) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]==(x-2*y[x]+1)/(2*x-4*y[x]); ic={y[1]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x - 2*y(x) + 1)/(2*x - 4*y(x)),0) ics = {y(1): 1} dsolve(ode,func=y(x),ics=ics)