38.3.5 problem 5

Internal problem ID [6483]
Book : Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001
Section : Program 25. Second order differential equations. Test Excercise 25. page 1093
Problem number : 5
Date solved : Wednesday, March 05, 2025 at 12:51:49 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=4 \sin \left (x \right ) \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = 4*sin(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 x +c_2 \right ) {\mathrm e}^{x}+2 \cos \left (x \right ) \]
Mathematica. Time used: 0.017 (sec). Leaf size: 21
ode=D[y[x],{x,2}]-2*D[y[x],x]+y[x]==4*Sin[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to 2 \cos (x)+e^x (c_2 x+c_1) \]
Sympy. Time used: 0.181 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - 4*sin(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} x\right ) e^{x} + 2 \cos {\left (x \right )} \]