43.2.10 problem 7.3.8 (e)

Internal problem ID [6867]
Book : Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section : Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number : 7.3.8 (e)
Date solved : Monday, January 27, 2025 at 02:31:59 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 49

Order:=6; 
dsolve(x^2*diff(y(x),x$2)+x^2*diff(y(x),x)+x^2*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{2} x^{2}+\frac {1}{6} x^{3}-\frac {1}{120} x^{5}\right ) y \left (0\right )+\left (x -\frac {1}{2} x^{2}+\frac {1}{24} x^{4}-\frac {1}{120} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 56

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]+x^2*D[y[x],x]+x^2*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (-\frac {x^5}{120}+\frac {x^4}{24}-\frac {x^2}{2}+x\right )+c_1 \left (-\frac {x^5}{120}+\frac {x^3}{6}-\frac {x^2}{2}+1\right ) \]