44.1.6 problem 6

Internal problem ID [6881]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Exercises 1.1 at page 12
Problem number : 6
Date solved : Monday, January 27, 2025 at 02:32:15 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} R^{\prime \prime }&=-\frac {k}{R^{2}} \end{align*}

Solution by Maple

Time used: 0.017 (sec). Leaf size: 369

dsolve(diff(R(t),t$2)=-k/R(t)^2,R(t), singsol=all)
 
\begin{align*} R &= \frac {c_{1} \left (c_{1}^{2} k^{2}-2 k c_{1} {\mathrm e}^{\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} k^{2}+2 \textit {\_Z} \,c_{1}^{3} k \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2}-2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{2} -2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) t \right )}+{\mathrm e}^{2 \operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} k^{2}+2 \textit {\_Z} \,c_{1}^{3} k \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2}-2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{2} -2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) t \right )}\right ) {\mathrm e}^{-\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} k^{2}+2 \textit {\_Z} \,c_{1}^{3} k \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2}-2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{2} -2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) t \right )}}{2} \\ R &= \frac {c_{1} \left (c_{1}^{2} k^{2}-2 k c_{1} {\mathrm e}^{\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} k^{2}+2 \textit {\_Z} \,c_{1}^{3} k \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2}+2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{2} +2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) t \right )}+{\mathrm e}^{2 \operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} k^{2}+2 \textit {\_Z} \,c_{1}^{3} k \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2}+2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{2} +2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) t \right )}\right ) {\mathrm e}^{-\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} k^{2}+2 \textit {\_Z} \,c_{1}^{3} k \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2}+2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{2} +2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) t \right )}}{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.172 (sec). Leaf size: 65

DSolve[D[R[t],{t,2}]==-k/R[t]^2,R[t],t,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\left (\frac {R(t) \sqrt {\frac {2 k}{R(t)}+c_1}}{c_1}-\frac {2 k \text {arctanh}\left (\frac {\sqrt {\frac {2 k}{R(t)}+c_1}}{\sqrt {c_1}}\right )}{c_1{}^{3/2}}\right ){}^2=(t+c_2){}^2,R(t)\right ] \]