44.1.14 problem 16

Internal problem ID [6889]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Exercises 1.1 at page 12
Problem number : 16
Date solved : Monday, January 27, 2025 at 02:34:04 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 23

dsolve(diff(y(x),x$2)+y(x)=tan(x),y(x), singsol=all)
 
\[ y = \sin \left (x \right ) c_{2} +\cos \left (x \right ) c_{1} -\cos \left (x \right ) \ln \left (\sec \left (x \right )+\tan \left (x \right )\right ) \]

Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 23

DSolve[D[y[x],{x,2}]+y[x]==Tan[x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \cos (x) (-\text {arctanh}(\sin (x)))+c_1 \cos (x)+c_2 \sin (x) \]