39.1.10 problem Problem 11.12

Internal problem ID [6515]
Book : Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014
Section : Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95
Problem number : Problem 11.12
Date solved : Wednesday, March 05, 2025 at 12:55:26 AM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }-5 y&=\left (x -1\right ) \sin \left (x \right )+\left (x +1\right ) \cos \left (x \right ) \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 29
ode:=diff(y(x),x)-5*y(x) = (x-1)*sin(x)+(1+x)*cos(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{5 x} c_1 +\frac {\left (-78 x -69\right ) \cos \left (x \right )}{338}+\frac {\left (-52 x +71\right ) \sin \left (x \right )}{338} \]
Mathematica. Time used: 0.187 (sec). Leaf size: 36
ode=D[y[x],x]-5*y[x]==(x-1)*Sin[x]+(x+1)*Cos[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{338} ((71-52 x) \sin (x)-3 (26 x+23) \cos (x))+c_1 e^{5 x} \]
Sympy. Time used: 0.333 (sec). Leaf size: 70
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((1 - x)*sin(x) - (x + 1)*cos(x) - 5*y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{5 x} - \frac {5 \sqrt {2} x \sin {\left (x + \frac {\pi }{4} \right )}}{26} - \frac {\sqrt {2} x \cos {\left (x + \frac {\pi }{4} \right )}}{26} + \frac {\sqrt {2} \sin {\left (x + \frac {\pi }{4} \right )}}{338} - \frac {35 \sqrt {2} \cos {\left (x + \frac {\pi }{4} \right )}}{169} \]