44.1.47 problem 49

Internal problem ID [6922]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Exercises 1.1 at page 12
Problem number : 49
Date solved : Monday, January 27, 2025 at 02:35:13 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=x \left (t \right )+3 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=5 x \left (t \right )+3 y \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.019 (sec). Leaf size: 35

dsolve([diff(x(t),t)=x(t)+3*y(t),diff(y(t),t)=5*x(t)+3*y(t)],singsol=all)
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{6 t} c_{1} +{\mathrm e}^{-2 t} c_{2} \\ y \left (t \right ) &= \frac {5 \,{\mathrm e}^{6 t} c_{1}}{3}-{\mathrm e}^{-2 t} c_{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 74

DSolve[{D[x[t],t]==x[t]+3*y[t],D[y[t],t]==5*x[t]+3*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} x(t)\to \frac {1}{8} e^{-2 t} \left (c_1 \left (3 e^{8 t}+5\right )+3 c_2 \left (e^{8 t}-1\right )\right ) \\ y(t)\to \frac {1}{8} e^{-2 t} \left (5 c_1 \left (e^{8 t}-1\right )+c_2 \left (5 e^{8 t}+3\right )\right ) \\ \end{align*}