44.2.21 problem 21

Internal problem ID [6953]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Section 1.2 Initial value problems. Exercises 1.2 at page 19
Problem number : 21
Date solved : Monday, January 27, 2025 at 02:38:15 PM
CAS classification : [_separable]

\begin{align*} \left (4-y^{2}\right ) y^{\prime }&=x^{2} \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 234

dsolve((4-y(x)^2)*diff(y(x),x)=x^2,y(x), singsol=all)
 
\begin{align*} y &= \frac {\left (-4 x^{3}-12 c_{1} +4 \sqrt {x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}-256}\right )^{{2}/{3}}+16}{2 \left (-4 x^{3}-12 c_{1} +4 \sqrt {x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}-256}\right )^{{1}/{3}}} \\ y &= -\frac {\left (1+i \sqrt {3}\right ) \left (-4 x^{3}-12 c_{1} +4 \sqrt {x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}-256}\right )^{{2}/{3}}-16 i \sqrt {3}+16}{4 \left (-4 x^{3}-12 c_{1} +4 \sqrt {x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}-256}\right )^{{1}/{3}}} \\ y &= \frac {\left (i \sqrt {3}-1\right ) \left (-4 x^{3}-12 c_{1} +4 \sqrt {x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}-256}\right )^{{2}/{3}}-16 i \sqrt {3}-16}{4 \left (-4 x^{3}-12 c_{1} +4 \sqrt {x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}-256}\right )^{{1}/{3}}} \\ \end{align*}

Solution by Mathematica

Time used: 2.550 (sec). Leaf size: 321

DSolve[(4-y[x]^2)*D[y[x],x]==x^2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {8+\sqrt [3]{2} \left (-x^3+\sqrt {x^6-6 c_1 x^3-256+9 c_1{}^2}+3 c_1\right ){}^{2/3}}{2^{2/3} \sqrt [3]{-x^3+\sqrt {x^6-6 c_1 x^3-256+9 c_1{}^2}+3 c_1}} \\ y(x)\to \frac {i \left (\sqrt {3}+i\right ) \sqrt [3]{-x^3+\sqrt {x^6-6 c_1 x^3-256+9 c_1{}^2}+3 c_1}}{2 \sqrt [3]{2}}-\frac {2 \sqrt [3]{2} \left (1+i \sqrt {3}\right )}{\sqrt [3]{-x^3+\sqrt {x^6-6 c_1 x^3-256+9 c_1{}^2}+3 c_1}} \\ y(x)\to \frac {2 i \sqrt [3]{2} \left (\sqrt {3}+i\right )}{\sqrt [3]{-x^3+\sqrt {x^6-6 c_1 x^3-256+9 c_1{}^2}+3 c_1}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{-x^3+\sqrt {x^6-6 c_1 x^3-256+9 c_1{}^2}+3 c_1}}{2 \sqrt [3]{2}} \\ \end{align*}