44.2.46 problem 48

Internal problem ID [6978]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Section 1.2 Initial value problems. Exercises 1.2 at page 19
Problem number : 48
Date solved : Tuesday, January 28, 2025 at 03:10:37 PM
CAS classification : [[_Riccati, _special]]

\begin{align*} y^{\prime }&=x^{2}+y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \end{align*}

Solution by Maple

Time used: 0.232 (sec). Leaf size: 139

dsolve([diff(y(x),x)=x^2+y(x)^2,y(0) = 1],y(x), singsol=all)
 
\[ y = \left \{\begin {array}{cc} -\frac {x \left (-\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}+\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \left (\Gamma \left (\frac {3}{4}\right )^{2}+\pi \right )\right )}{-\operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}+\left (\Gamma \left (\frac {3}{4}\right )^{2}+\pi \right ) \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} & x <0 \\ 1 & x =0 \\ -\frac {\left (\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}+\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \left (-\Gamma \left (\frac {3}{4}\right )^{2}+\pi \right )\right ) x}{\operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}+\left (-\Gamma \left (\frac {3}{4}\right )^{2}+\pi \right ) \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} & 0<x \end {array}\right . \]

Solution by Mathematica

Time used: 2.370 (sec). Leaf size: 114

DSolve[{D[y[x],x]==x^2+y[x]^2,{y[0] == 1}},y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {\operatorname {Gamma}\left (\frac {3}{4}\right ) \left (x^2 \operatorname {BesselJ}\left (-\frac {5}{4},\frac {x^2}{2}\right )-x^2 \operatorname {BesselJ}\left (\frac {3}{4},\frac {x^2}{2}\right )+\operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )\right )-x^2 \operatorname {Gamma}\left (\frac {1}{4}\right ) \operatorname {BesselJ}\left (-\frac {3}{4},\frac {x^2}{2}\right )}{x \left (\operatorname {Gamma}\left (\frac {1}{4}\right ) \operatorname {BesselJ}\left (\frac {1}{4},\frac {x^2}{2}\right )-2 \operatorname {Gamma}\left (\frac {3}{4}\right ) \operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )\right )} \]