40.2.26 problem 52

Internal problem ID [6604]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 4. Equations of first order and first degree (Variable separable). Supplemetary problems. Page 22
Problem number : 52
Date solved : Friday, March 14, 2025 at 01:48:53 AM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(y)]`]]

\begin{align*} x -2 \sin \left (y\right )+3+\left (2 x -4 \sin \left (y\right )-3\right ) \cos \left (y\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.045 (sec). Leaf size: 22
ode:=x-2*sin(y(x))+3+(2*x-4*sin(y(x))-3)*cos(y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \arcsin \left (\frac {9 \operatorname {LambertW}\left (\frac {c_1 \,{\mathrm e}^{-\frac {1}{3}-\frac {8 x}{9}}}{9}\right )}{8}+\frac {3}{8}+\frac {x}{2}\right ) \]
Mathematica. Time used: 60.476 (sec). Leaf size: 73
ode=(x-2*Sin[y[x]]+3)+(2*x-4*Sin[y[x]]-3)*Cos[y[x]]*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \arcsin \left (\frac {1}{8} \left (9 W\left (-\frac {1}{9} e^{-\frac {2}{9} (4 x+3-8 c_1)}\right )+4 x+3\right )\right ) \\ y(x)\to \arcsin \left (\frac {1}{8} \left (9 W\left (-\frac {1}{9} e^{-\frac {2}{9} (4 x+3-8 c_1)}\right )+4 x+3\right )\right ) \\ \end{align*}
Sympy. Time used: 130.700 (sec). Leaf size: 364
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x + (2*x - 4*sin(y(x)) - 3)*cos(y(x))*Derivative(y(x), x) - 2*sin(y(x)) + 3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \operatorname {asin}{\left (\frac {x}{2} + \frac {9 W\left (\frac {\sqrt [9]{C_{1} e^{- 8 x}}}{9 e^{\frac {1}{3}}}\right )}{8} + \frac {3}{8} \right )}, \ y{\left (x \right )} = \operatorname {asin}{\left (\frac {x}{2} + \frac {9 W\left (\frac {\sqrt [9]{C_{1} e^{- 8 x}} e^{- \frac {1}{3} - \frac {2 i \pi }{9}}}{9}\right )}{8} + \frac {3}{8} \right )}, \ y{\left (x \right )} = \operatorname {asin}{\left (\frac {x}{2} + \frac {9 W\left (- \frac {\sqrt [9]{C_{1} e^{- 8 x}} e^{- \frac {1}{3} - \frac {i \pi }{9}}}{9}\right )}{8} + \frac {3}{8} \right )}, \ y{\left (x \right )} = \operatorname {asin}{\left (\frac {x}{2} + \frac {9 W\left (- \frac {\sqrt [9]{C_{1} e^{- 8 x}} e^{- \frac {1}{3} + \frac {i \pi }{9}}}{9}\right )}{8} + \frac {3}{8} \right )}, \ y{\left (x \right )} = \operatorname {asin}{\left (\frac {x}{2} + \frac {9 W\left (\frac {\sqrt [9]{C_{1} e^{- 8 x}} e^{- \frac {1}{3} + \frac {2 i \pi }{9}}}{9}\right )}{8} + \frac {3}{8} \right )}, \ y{\left (x \right )} = \operatorname {asin}{\left (\frac {x}{2} + \frac {9 W\left (\frac {\sqrt [9]{C_{1} e^{- 8 x}} \left (-1 - \sqrt {3} i\right )}{18 e^{\frac {1}{3}}}\right )}{8} + \frac {3}{8} \right )}, \ y{\left (x \right )} = \operatorname {asin}{\left (\frac {x}{2} + \frac {9 W\left (\frac {\sqrt [9]{C_{1} e^{- 8 x}} \left (-1 + \sqrt {3} i\right )}{18 e^{\frac {1}{3}}}\right )}{8} + \frac {3}{8} \right )}, \ y{\left (x \right )} = \operatorname {asin}{\left (\frac {x}{2} + \frac {9 W\left (\frac {\sqrt [9]{C_{1} e^{- 8 x}} \left (\sin {\left (\frac {\pi }{18} \right )} - i \cos {\left (\frac {\pi }{18} \right )}\right )}{9 e^{\frac {1}{3}}}\right )}{8} + \frac {3}{8} \right )}, \ y{\left (x \right )} = \operatorname {asin}{\left (\frac {x}{2} + \frac {9 W\left (\frac {\sqrt [9]{C_{1} e^{- 8 x}} \left (\sin {\left (\frac {\pi }{18} \right )} + i \cos {\left (\frac {\pi }{18} \right )}\right )}{9 e^{\frac {1}{3}}}\right )}{8} + \frac {3}{8} \right )}\right ] \]