44.3.12 problem 20

Internal problem ID [6993]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Review problems at page 34
Problem number : 20
Date solved : Monday, January 27, 2025 at 02:40:10 PM
CAS classification : [[_Riccati, _special]]

\begin{align*} y^{\prime }&=x^{2}+y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=-1 \end{align*}

Solution by Maple

Time used: 0.118 (sec). Leaf size: 79

dsolve([diff(y(x),x)=x^2+y(x)^2,y(1) = -1],y(x), singsol=all)
 
\[ y = -\frac {x \left (\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \left (-\operatorname {BesselY}\left (-\frac {3}{4}, \frac {1}{2}\right )+\operatorname {BesselY}\left (\frac {1}{4}, \frac {1}{2}\right )\right )+\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \left (\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {1}{2}\right )-\operatorname {BesselJ}\left (\frac {1}{4}, \frac {1}{2}\right )\right )\right )}{\left (-\operatorname {BesselY}\left (-\frac {3}{4}, \frac {1}{2}\right )+\operatorname {BesselY}\left (\frac {1}{4}, \frac {1}{2}\right )\right ) \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \left (\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {1}{2}\right )-\operatorname {BesselJ}\left (\frac {1}{4}, \frac {1}{2}\right )\right )} \]

Solution by Mathematica

Time used: 0.091 (sec). Leaf size: 199

DSolve[{D[y[x],x]==x^2+y[x]^2,{y[1]==-1}},y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {x^2 \left (\operatorname {BesselJ}\left (-\frac {5}{4},\frac {1}{2}\right )-\operatorname {BesselJ}\left (-\frac {1}{4},\frac {1}{2}\right )-\operatorname {BesselJ}\left (\frac {3}{4},\frac {1}{2}\right )\right ) \operatorname {BesselJ}\left (-\frac {3}{4},\frac {x^2}{2}\right )+x^2 \left (\operatorname {BesselJ}\left (\frac {1}{4},\frac {1}{2}\right )-\operatorname {BesselJ}\left (-\frac {3}{4},\frac {1}{2}\right )\right ) \operatorname {BesselJ}\left (-\frac {5}{4},\frac {x^2}{2}\right )-\left (\operatorname {BesselJ}\left (-\frac {3}{4},\frac {1}{2}\right )-\operatorname {BesselJ}\left (\frac {1}{4},\frac {1}{2}\right )\right ) \left (\operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )-x^2 \operatorname {BesselJ}\left (\frac {3}{4},\frac {x^2}{2}\right )\right )}{x \left (2 \left (\operatorname {BesselJ}\left (-\frac {3}{4},\frac {1}{2}\right )-\operatorname {BesselJ}\left (\frac {1}{4},\frac {1}{2}\right )\right ) \operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )+\left (-\operatorname {BesselJ}\left (-\frac {5}{4},\frac {1}{2}\right )+\operatorname {BesselJ}\left (-\frac {1}{4},\frac {1}{2}\right )+\operatorname {BesselJ}\left (\frac {3}{4},\frac {1}{2}\right )\right ) \operatorname {BesselJ}\left (\frac {1}{4},\frac {x^2}{2}\right )\right )} \]