40.4.16 problem 19 (r)

Internal problem ID [6656]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary problems. Page 39
Problem number : 19 (r)
Date solved : Wednesday, March 05, 2025 at 01:35:23 AM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(y)]`]]

\begin{align*} 1+y^{2}&=\left (\arctan \left (y\right )-x \right ) y^{\prime } \end{align*}

Maple. Time used: 0.013 (sec). Leaf size: 18
ode:=1+y(x)^2 = (arctan(y(x))-x)*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \tan \left (\operatorname {LambertW}\left (-c_1 \,{\mathrm e}^{-x -1}\right )+x +1\right ) \]
Mathematica. Time used: 60.178 (sec). Leaf size: 21
ode=(1+y[x]^2)==(ArcTan[y[x]]-x)*D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \tan \left (W\left (c_1 \left (-e^{-x-1}\right )\right )+x+1\right ) \]
Sympy. Time used: 3.352 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x - atan(y(x)))*Derivative(y(x), x) + y(x)**2 + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \tan {\left (x + W\left (C_{1} e^{- x - 1}\right ) + 1 \right )} \]