44.4.35 problem 16

Internal problem ID [7048]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.1 Solution curves without a solution. Exercises 2.1 at page 44
Problem number : 16
Date solved : Monday, January 27, 2025 at 02:42:25 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=x \left (y-4\right )^{2}-2 \end{align*}

Solution by Maple

Time used: 0.023 (sec). Leaf size: 113

dsolve(diff(y(x),x)=x*(y(x)-4)^2-2,y(x), singsol=all)
 
\[ y = \frac {2 \left (2^{{1}/{3}} \operatorname {AiryAi}\left (1, -\frac {8 \,2^{{2}/{3}} x}{\left (-32 i\right )^{{2}/{3}}}\right ) \left (1+i \sqrt {3}\right ) c_{1} +2^{{1}/{3}} \operatorname {AiryBi}\left (1, -\frac {8 \,2^{{2}/{3}} x}{\left (-32 i\right )^{{2}/{3}}}\right ) \left (1+i \sqrt {3}\right )+\operatorname {AiryAi}\left (-\frac {8 \,2^{{2}/{3}} x}{\left (-32 i\right )^{{2}/{3}}}\right ) c_{1} +\operatorname {AiryBi}\left (-\frac {8 \,2^{{2}/{3}} x}{\left (-32 i\right )^{{2}/{3}}}\right )\right ) 2^{{2}/{3}}}{\left (1+i \sqrt {3}\right ) \left (c_{1} \operatorname {AiryAi}\left (1, -\frac {8 \,2^{{2}/{3}} x}{\left (-32 i\right )^{{2}/{3}}}\right )+\operatorname {AiryBi}\left (1, -\frac {8 \,2^{{2}/{3}} x}{\left (-32 i\right )^{{2}/{3}}}\right )\right )} \]

Solution by Mathematica

Time used: 0.192 (sec). Leaf size: 113

DSolve[D[y[x],x]==x*(y[x]-4)^2-2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {2^{2/3} \operatorname {AiryBi}\left (\sqrt [3]{2} x\right )-4 \operatorname {AiryBiPrime}\left (\sqrt [3]{2} x\right )+2^{2/3} c_1 \operatorname {AiryAi}\left (\sqrt [3]{2} x\right )-4 c_1 \operatorname {AiryAiPrime}\left (\sqrt [3]{2} x\right )}{\operatorname {AiryBiPrime}\left (\sqrt [3]{2} x\right )+c_1 \operatorname {AiryAiPrime}\left (\sqrt [3]{2} x\right )} \\ y(x)\to 4-\frac {2^{2/3} \operatorname {AiryAi}\left (\sqrt [3]{2} x\right )}{\operatorname {AiryAiPrime}\left (\sqrt [3]{2} x\right )} \\ \end{align*}