40.9.9 problem 19

Internal problem ID [6719]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 14. Linear equations with constant coefficients. Supplemetary problems. Page 92
Problem number : 19
Date solved : Wednesday, March 05, 2025 at 02:40:05 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-y&=\sin \left (x \right )^{2} \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 22
ode:=diff(diff(y(x),x),x)-y(x) = sin(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_2 \,{\mathrm e}^{-x}+{\mathrm e}^{x} c_1 +\frac {\cos \left (x \right )^{2}}{5}-\frac {3}{5} \]
Mathematica. Time used: 0.05 (sec). Leaf size: 30
ode=D[y[x],{x,2}]-y[x]==Sin[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{10} (\cos (2 x)-5)+c_1 e^x+c_2 e^{-x} \]
Sympy. Time used: 0.545 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) - sin(x)**2 + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- x} + C_{2} e^{x} + \frac {\cos {\left (2 x \right )}}{10} - \frac {1}{2} \]