Internal
problem
ID
[6744]
Book
:
Schaums
Outline.
Theory
and
problems
of
Differential
Equations,
1st
edition.
Frank
Ayres.
McGraw
Hill
1952
Section
:
Chapter
16.
Linear
equations
with
constant
coefficients
(Short
methods).
Supplemetary
problems.
Page
107
Problem
number
:
36
Date
solved
:
Wednesday, March 05, 2025 at 02:42:23 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+2*y(x) = x^3+x^2+exp(-2*x)+cos(3*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+2*y[x]==x^3+x^2+Exp[-2*x]+Cos[3*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3 - x**2 + 2*y(x) - cos(3*x) + Derivative(y(x), (x, 2)) - exp(-2*x),0) ics = {} dsolve(ode,func=y(x),ics=ics)