40.13.1 problem 21

Internal problem ID [6755]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 18. Linear equations with variable coefficients (Equations of second order). Supplemetary problems. Page 120
Problem number : 21
Date solved : Wednesday, March 05, 2025 at 02:42:54 AM
CAS classification : [_Laguerre]

\begin{align*} x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 19
ode:=x*diff(diff(y(x),x),x)-(x+2)*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} c_1 +c_2 \left (x^{2}+2 x +2\right ) \]
Mathematica. Time used: 0.033 (sec). Leaf size: 24
ode=x*D[y[x],{x,2}]-(x+2)*D[y[x],x]+2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 e^x-c_2 \left (x^2+2 x+2\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) - (x + 2)*Derivative(y(x), x) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False