44.5.81 problem 68 (b)
Internal
problem
ID
[7143]
Book
:
A
First
Course
in
Differential
Equations
with
Modeling
Applications
by
Dennis
G.
Zill.
12
ed.
Metric
version.
2024.
Cengage
learning.
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.2
Separable
equations.
Exercises
2.2
at
page
53
Problem
number
:
68
(b)
Date
solved
:
Tuesday, February 04, 2025 at 12:38:44 AM
CAS
classification
:
[_separable]
\begin{align*} y^{\prime }&=\frac {x \left (1-x \right )}{y \left (y-2\right )} \end{align*}
With initial conditions
\begin{align*} y \left (0\right )&={\frac {3}{2}} \end{align*}
✓ Solution by Maple
Time used: 18.692 (sec). Leaf size: 1310
dsolve([diff(y(x),x)=(x*(1-x))/(y(x)*(y(x)-2)),y(0) = 3/2],y(x), singsol=all)
\begin{align*}
\text {Expression too large to display} \\
y &= \frac {2^{{2}/{3}} {\left (\frac {64+\operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )^{2}+\left (-8 x^{3}+8 \sqrt {\frac {\left (-8-\frac {\operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )^{2}}{8}+\left (x^{3}-\frac {3}{2} x^{2}-2\right ) \operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )\right ) \left (-8-\frac {\operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )^{2}}{8}+\left (x^{3}-\frac {3}{2} x^{2}+2\right ) \operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )\right )}{\operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )^{2}}}+12 x^{2}\right ) \operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )}{\operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )}\right )}^{{2}/{3}}+8 \,2^{{1}/{3}}+4 {\left (\frac {64+\operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )^{2}+\left (-8 x^{3}+8 \sqrt {\frac {\left (-8-\frac {\operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )^{2}}{8}+\left (x^{3}-\frac {3}{2} x^{2}-2\right ) \operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )\right ) \left (-8-\frac {\operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )^{2}}{8}+\left (x^{3}-\frac {3}{2} x^{2}+2\right ) \operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )\right )}{\operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )^{2}}}+12 x^{2}\right ) \operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )}{\operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )}\right )}^{{1}/{3}}}{4 {\left (\frac {64+\operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )^{2}+\left (-8 x^{3}+8 \sqrt {\frac {\left (-8-\frac {\operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )^{2}}{8}+\left (x^{3}-\frac {3}{2} x^{2}-2\right ) \operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )\right ) \left (-8-\frac {\operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )^{2}}{8}+\left (x^{3}-\frac {3}{2} x^{2}+2\right ) \operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )\right )}{\operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )^{2}}}+12 x^{2}\right ) \operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )}{\operatorname {RootOf}\left (-\textit {\_Z}^{{2}/{3}}+\textit {\_Z}^{{1}/{3}}-4\right )}\right )}^{{1}/{3}}} \\
\end{align*}
✓ Solution by Mathematica
Time used: 4.439 (sec). Leaf size: 242
DSolve[{D[y[x],x]==(x*(1-x))/(y[x]*(y[x]-2)),{y[0]==3/2}},y[x],x,IncludeSingularSolutions -> True]
\[
y(x)\to \frac {-i 2^{2/3} \sqrt {3} \left (-8 x^3+12 x^2+\sqrt {64 x^6-192 x^5+144 x^4+176 x^3-264 x^2-135}-11\right )^{2/3}-2^{2/3} \left (-8 x^3+12 x^2+\sqrt {64 x^6-192 x^5+144 x^4+176 x^3-264 x^2-135}-11\right )^{2/3}+8 \sqrt [3]{-8 x^3+12 x^2+\sqrt {64 x^6-192 x^5+144 x^4+176 x^3-264 x^2-135}-11}+8 i \sqrt [3]{2} \sqrt {3}-8 \sqrt [3]{2}}{8 \sqrt [3]{-8 x^3+12 x^2+\sqrt {64 x^6-192 x^5+144 x^4+176 x^3-264 x^2-135}-11}}
\]