Internal
problem
ID
[6769]
Book
:
Schaums
Outline.
Theory
and
problems
of
Differential
Equations,
1st
edition.
Frank
Ayres.
McGraw
Hill
1952
Section
:
Chapter
18.
Linear
equations
with
variable
coefficients
(Equations
of
second
order).
Supplemetary
problems.
Page
120
Problem
number
:
36
Date
solved
:
Wednesday, March 05, 2025 at 02:45:19 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+(9*x^2+6)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+(6+9*x^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 4*x*Derivative(y(x), x) + (9*x**2 + 6)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)