44.6.15 problem 15

Internal problem ID [7159]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.3 Linear equations. Exercises 2.3 at page 63
Problem number : 15
Date solved : Tuesday, February 04, 2025 at 12:41:34 AM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} y-4 \left (x +y^{6}\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.026 (sec). Leaf size: 989

dsolve(y(x)-4*(x+y(x)^6)*diff(y(x),x)=0,y(x), singsol=all)
 
\begin{align*} y &= -\frac {\sqrt {3}\, \sqrt {2}\, \sqrt {\left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}} \left (\left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{2}/{3}}-c_1 \left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}+c_1^{2}\right )}}{6 \left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}} \\ y &= \frac {\sqrt {3}\, \sqrt {2}\, \sqrt {\left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}} \left (\left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{2}/{3}}-c_1 \left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}+c_1^{2}\right )}}{6 \left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}} \\ y &= -\frac {\sqrt {3}\, \sqrt {-\left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}} \left (\left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}+c_1 \right ) \left (i \left (\left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}-c_1 \right ) \sqrt {3}+\left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}+c_1 \right )}}{6 \left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}} \\ y &= \frac {\sqrt {3}\, \sqrt {-\left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}} \left (\left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}+c_1 \right ) \left (i \left (\left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}-c_1 \right ) \sqrt {3}+\left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}+c_1 \right )}}{6 \left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}} \\ y &= -\frac {\sqrt {3}\, \sqrt {\left (i \left (\left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}-c_1 \right ) \sqrt {3}-\left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}-c_1 \right ) \left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}} \left (\left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}+c_1 \right )}}{6 \left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}} \\ y &= \frac {\sqrt {3}\, \sqrt {\left (i \left (\left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}-c_1 \right ) \sqrt {3}-\left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}-c_1 \right ) \left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}} \left (\left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}+c_1 \right )}}{6 \left (-c_1^{3}+6 \sqrt {3}\, \sqrt {-x \,c_1^{3}+27 x^{2}}+54 x \right )^{{1}/{3}}} \\ \end{align*}

Solution by Mathematica

Time used: 35.293 (sec). Leaf size: 827

DSolve[y[x]-4*(x+y[x]^6)*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {\sqrt {\frac {c_1{}^2}{\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}}+\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}-c_1}}{\sqrt {6}} \\ y(x)\to \frac {\sqrt {\frac {c_1{}^2}{\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}}+\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}-c_1}}{\sqrt {6}} \\ y(x)\to -\frac {\sqrt {-\frac {i \left (\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}+c_1\right ) \left (\left (\sqrt {3}-i\right ) \sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}-\left (\sqrt {3}+i\right ) c_1\right )}{\sqrt [3]{54 x+6 \sqrt {3} \sqrt {x \left (27 x-c_1{}^3\right )}-c_1{}^3}}}}{2 \sqrt {3}} \\ y(x)\to \frac {\sqrt {-\frac {i \left (\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}+c_1\right ) \left (\left (\sqrt {3}-i\right ) \sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}-\left (\sqrt {3}+i\right ) c_1\right )}{\sqrt [3]{54 x+6 \sqrt {3} \sqrt {x \left (27 x-c_1{}^3\right )}-c_1{}^3}}}}{2 \sqrt {3}} \\ y(x)\to -\frac {\sqrt {\frac {i \left (\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}+c_1\right ) \left (\left (\sqrt {3}+i\right ) \sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}-\left (\sqrt {3}-i\right ) c_1\right )}{\sqrt [3]{54 x+6 \sqrt {3} \sqrt {x \left (27 x-c_1{}^3\right )}-c_1{}^3}}}}{2 \sqrt {3}} \\ y(x)\to \frac {\sqrt {\frac {i \left (\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}+c_1\right ) \left (\left (\sqrt {3}+i\right ) \sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}-\left (\sqrt {3}-i\right ) c_1\right )}{\sqrt [3]{54 x+6 \sqrt {3} \sqrt {x \left (27 x-c_1{}^3\right )}-c_1{}^3}}}}{2 \sqrt {3}} \\ y(x)\to 0 \\ \end{align*}