40.17.11 problem 21

Internal problem ID [6812]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 26. Integration in series (singular points). Supplemetary problems. Page 218
Problem number : 21
Date solved : Wednesday, March 05, 2025 at 02:46:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{3} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }-y&=0 \end{align*}

Using series method with expansion around

\begin{align*} \infty \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 112
Order:=6; 
ode:=x^3*diff(diff(y(x),x),x)+(x^2+x)*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x),type='series',x=infinity);
 
\[ y = \frac {7200 \left (O\left (\frac {1}{x^{6}}\right ) x^{5}+x^{5}+x^{4}+\frac {x^{3}}{2}+\frac {x^{2}}{6}+\frac {x}{24}+\frac {1}{120}\right ) c_2 \ln \left (\frac {1}{x}\right )+7200 x^{5} \left (c_1 +c_2 \right ) O\left (\frac {1}{x^{6}}\right )+7200 c_1 \,x^{5}+\left (7200 c_1 -7200 c_2 \right ) x^{4}+\left (3600 c_1 -5400 c_2 \right ) x^{3}+\left (1200 c_1 -2200 c_2 \right ) x^{2}+\left (300 c_1 -625 c_2 \right ) x +60 c_1 -137 c_2}{7200 x^{5}} \]
Mathematica. Time used: 0.007 (sec). Leaf size: 124
ode=x^3*D[y[x],{x,2}]+(x^2+x)*D[y[x],x]-y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,Infinity,5}]
 
\[ y(x)\to c_1 \left (\frac {1}{120 x^5}+\frac {1}{24 x^4}+\frac {1}{6 x^3}+\frac {1}{2 x^2}+\frac {1}{x}+1\right )+c_2 \left (-\frac {137}{7200 x^5}-\frac {\log (x)}{120 x^5}-\frac {25}{288 x^4}-\frac {\log (x)}{24 x^4}-\frac {11}{36 x^3}-\frac {\log (x)}{6 x^3}-\frac {3}{4 x^2}-\frac {\log (x)}{2 x^2}-\frac {1}{x}-\frac {\log (x)}{x}-\log (x)\right ) \]
Sympy. Time used: 1.673 (sec). Leaf size: 175
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), (x, 2)) + (x**2 + x)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=inf,n=6)
 
\[ y{\left (x \right )} = C_{3} \left (- C_{2} + x - \frac {\left (C_{2} - x\right )^{2}}{2 C_{2}} - \frac {\left (C_{2} - x\right )^{3}}{3 C_{2}^{2}} - \frac {\left (C_{2} - x\right )^{2}}{2 C_{2}^{2}} - \frac {\left (C_{2} - x\right )^{4}}{4 C_{2}^{3}} - \frac {5 \left (C_{2} - x\right )^{3}}{6 C_{2}^{3}} - \frac {13 \left (C_{2} - x\right )^{4}}{12 C_{2}^{4}} - \frac {\left (C_{2} - x\right )^{3}}{6 C_{2}^{4}} - \frac {11 \left (C_{2} - x\right )^{4}}{24 C_{2}^{5}} - \frac {\left (C_{2} - x\right )^{4}}{24 C_{2}^{6}}\right ) + C_{1} \left (1 + \frac {\left (C_{2} - x\right )^{2}}{2 C_{2}^{3}} + \frac {2 \left (C_{2} - x\right )^{3}}{3 C_{2}^{4}} + \frac {3 \left (C_{2} - x\right )^{4}}{4 C_{2}^{5}} + \frac {\left (C_{2} - x\right )^{3}}{6 C_{2}^{5}} + \frac {5 \left (C_{2} - x\right )^{4}}{12 C_{2}^{6}} + \frac {\left (C_{2} - x\right )^{4}}{24 C_{2}^{7}}\right ) + O\left (x^{6}\right ) \]