45.1.7 problem 19

Internal problem ID [7207]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2 page 230
Problem number : 19
Date solved : Monday, January 27, 2025 at 02:48:11 PM
CAS classification : [_Lienard]

\begin{align*} y^{\prime \prime }-2 x y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 39

Order:=6; 
dsolve(diff(y(x),x$2)-2*x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{2} x^{2}-\frac {1}{8} x^{4}\right ) y \left (0\right )+\left (x +\frac {1}{6} x^{3}+\frac {1}{24} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 42

AsymptoticDSolveValue[D[y[x],{x,2}]-2*x*D[y[x],x]+y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {x^5}{24}+\frac {x^3}{6}+x\right )+c_1 \left (-\frac {x^4}{8}-\frac {x^2}{2}+1\right ) \]