45.1.10 problem 22

Internal problem ID [7210]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2 page 230
Problem number : 22
Date solved : Monday, January 27, 2025 at 02:48:14 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} y^{\prime \prime }+2 x y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 39

Order:=6; 
dsolve(diff(y(x),x$2)+2*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-x^{2}+\frac {1}{2} x^{4}\right ) y \left (0\right )+\left (x -\frac {2}{3} x^{3}+\frac {4}{15} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 40

AsymptoticDSolveValue[D[y[x],{x,2}]+2*x*D[y[x],x]+2*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {4 x^5}{15}-\frac {2 x^3}{3}+x\right )+c_1 \left (\frac {x^4}{2}-x^2+1\right ) \]