45.1.13 problem 25

Internal problem ID [7213]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2 page 230
Problem number : 25
Date solved : Monday, January 27, 2025 at 02:48:16 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} y^{\prime \prime }-\left (1+x \right ) y^{\prime }-y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 59

Order:=6; 
dsolve(diff(y(x),x$2)-(x+1)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {1}{2} x^{2}+\frac {1}{6} x^{3}+\frac {1}{6} x^{4}+\frac {1}{15} x^{5}\right ) y \left (0\right )+\left (x +\frac {1}{2} x^{2}+\frac {1}{2} x^{3}+\frac {1}{4} x^{4}+\frac {3}{20} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 70

AsymptoticDSolveValue[D[y[x],{x,2}]-(x+1)*D[y[x],x]-y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {x^5}{15}+\frac {x^4}{6}+\frac {x^3}{6}+\frac {x^2}{2}+1\right )+c_2 \left (\frac {3 x^5}{20}+\frac {x^4}{4}+\frac {x^3}{2}+\frac {x^2}{2}+x\right ) \]