45.1.15 problem 27

Internal problem ID [7215]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2 page 230
Problem number : 27
Date solved : Monday, January 27, 2025 at 02:48:18 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }+3 x y^{\prime }-y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 39

Order:=6; 
dsolve((x^2+2)*diff(y(x),x$2)+3*x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {1}{4} x^{2}-\frac {7}{96} x^{4}\right ) y \left (0\right )+\left (x -\frac {1}{6} x^{3}+\frac {7}{120} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 42

AsymptoticDSolveValue[(x^2+2)*D[y[x],{x,2}]+3*x*D[y[x],x]-y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {7 x^5}{120}-\frac {x^3}{6}+x\right )+c_1 \left (-\frac {7 x^4}{96}+\frac {x^2}{4}+1\right ) \]