45.1.20 problem 32

Internal problem ID [7220]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.1.2 page 230
Problem number : 32
Date solved : Monday, January 27, 2025 at 02:48:23 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=1 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 14

Order:=6; 
dsolve([(x^2+1)*diff(y(x),x$2)+2*x*diff(y(x),x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0);
 
\[ y = x -\frac {1}{3} x^{3}+\frac {1}{5} x^{5}+\operatorname {O}\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 19

AsymptoticDSolveValue[{(x^2+1)*D[y[x],{x,2}]+2*x*D[y[x],x]==0,{y[0]==0,Derivative[1][y][0] ==1}},y[x],{x,0,"6"-1}]
 
\[ y(x)\to \frac {x^5}{5}-\frac {x^3}{3}+x \]