45.2.13 problem 13

Internal problem ID [7236]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page 239
Problem number : 13
Date solved : Monday, January 27, 2025 at 02:48:43 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3}&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.008 (sec). Leaf size: 40

Order:=6; 
dsolve(x^2*diff(y(x),x$2)+(5/3*x+x^2)*diff(y(x),x)-1/3*y(x)=0,y(x),type='series',x=0);
 
\[ y = \frac {c_{2} x^{{4}/{3}} \left (1-\frac {1}{7} x +\frac {1}{35} x^{2}-\frac {1}{195} x^{3}+\frac {1}{1248} x^{4}-\frac {1}{9120} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{1} \left (1-3 x +\operatorname {O}\left (x^{6}\right )\right )}{x} \]

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 58

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]+(5/3*x+x^2)*D[y[x],x]-1/3*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \sqrt [3]{x} \left (-\frac {x^5}{9120}+\frac {x^4}{1248}-\frac {x^3}{195}+\frac {x^2}{35}-\frac {x}{7}+1\right )+\frac {c_2 (1-3 x)}{x} \]