45.2.15 problem 15

Internal problem ID [7238]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page 239
Problem number : 15
Date solved : Monday, January 27, 2025 at 02:48:45 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} 2 x y^{\prime \prime }-y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.008 (sec). Leaf size: 44

Order:=6; 
dsolve(2*x*diff(y(x),x$2)-diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);
 
\[ y = c_{1} x^{{3}/{2}} \left (1-\frac {2}{5} x +\frac {2}{35} x^{2}-\frac {4}{945} x^{3}+\frac {2}{10395} x^{4}-\frac {4}{675675} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (1+2 x -2 x^{2}+\frac {4}{9} x^{3}-\frac {2}{45} x^{4}+\frac {4}{1575} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 81

AsymptoticDSolveValue[2*x*D[y[x],{x,2}]-D[y[x],x]+2*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {4 x^5}{1575}-\frac {2 x^4}{45}+\frac {4 x^3}{9}-2 x^2+2 x+1\right )+c_1 \left (-\frac {4 x^5}{675675}+\frac {2 x^4}{10395}-\frac {4 x^3}{945}+\frac {2 x^2}{35}-\frac {2 x}{5}+1\right ) x^{3/2} \]