45.2.21 problem 21

Internal problem ID [7244]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page 239
Problem number : 21
Date solved : Monday, January 27, 2025 at 02:48:52 PM
CAS classification : [_Laguerre]

\begin{align*} 2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.009 (sec). Leaf size: 44

Order:=6; 
dsolve(2*x*diff(y(x),x$2)-(3+2*x)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
 
\[ y = c_{1} x^{{5}/{2}} \left (1+\frac {4}{7} x +\frac {4}{21} x^{2}+\frac {32}{693} x^{3}+\frac {80}{9009} x^{4}+\frac {64}{45045} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (1+\frac {1}{3} x -\frac {1}{6} x^{2}-\frac {1}{6} x^{3}-\frac {5}{72} x^{4}-\frac {7}{360} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 85

AsymptoticDSolveValue[2*x*D[y[x],{x,2}]-(3+2*x)*D[y[x],x]+y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (-\frac {7 x^5}{360}-\frac {5 x^4}{72}-\frac {x^3}{6}-\frac {x^2}{6}+\frac {x}{3}+1\right )+c_1 \left (\frac {64 x^5}{45045}+\frac {80 x^4}{9009}+\frac {32 x^3}{693}+\frac {4 x^2}{21}+\frac {4 x}{7}+1\right ) x^{5/2} \]