7.5.40 problem 40

Internal problem ID [144]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.6 (substitution and exact equations). Problems at page 72
Problem number : 40
Date solved : Friday, February 07, 2025 at 07:57:31 AM
CAS classification : [_exact]

\begin{align*} {\mathrm e}^{x} \sin \left (y\right )+\tan \left (y\right )+\left ({\mathrm e}^{x} \cos \left (y\right )+x \sec \left (y\right )^{2}\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.039 (sec). Leaf size: 153

dsolve(( exp(x)*sin(y(x))+tan(y(x)) )+( exp(x)*cos(y(x))+x*sec(y(x))^2 )*diff(y(x),x)=0,y(x), singsol=all)
 
\[ y = \arctan \left (-\frac {c_1 \operatorname {RootOf}\left (\textit {\_Z}^{4} {\mathrm e}^{2 x}+2 x \,{\mathrm e}^{x} \textit {\_Z}^{3}+\left (c_1^{2}+x^{2}-{\mathrm e}^{2 x}\right ) \textit {\_Z}^{2}-2 x \,{\mathrm e}^{x} \textit {\_Z} -x^{2}\right )}{\operatorname {RootOf}\left (\textit {\_Z}^{4} {\mathrm e}^{2 x}+2 x \,{\mathrm e}^{x} \textit {\_Z}^{3}+\left (c_1^{2}+x^{2}-{\mathrm e}^{2 x}\right ) \textit {\_Z}^{2}-2 x \,{\mathrm e}^{x} \textit {\_Z} -x^{2}\right ) {\mathrm e}^{x}+x}, \operatorname {RootOf}\left (\textit {\_Z}^{4} {\mathrm e}^{2 x}+2 x \,{\mathrm e}^{x} \textit {\_Z}^{3}+\left (c_1^{2}+x^{2}-{\mathrm e}^{2 x}\right ) \textit {\_Z}^{2}-2 x \,{\mathrm e}^{x} \textit {\_Z} -x^{2}\right )\right ) \]

Solution by Mathematica

Time used: 60.901 (sec). Leaf size: 5539

DSolve[(  Exp[x]*Sin[y[x]]+Tan[y[x]] )+( Exp[x]*Cos[y[x]]+x*Sec[y[x]]^2 )*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 

Too large to display