45.2.24 problem 24

Internal problem ID [7247]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page 239
Problem number : 24
Date solved : Monday, January 27, 2025 at 02:48:56 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (2 x -1\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.010 (sec). Leaf size: 48

Order:=6; 
dsolve(2*x^2*diff(y(x),x$2)+3*x*diff(y(x),x)+(2*x-1)*y(x)=0,y(x),type='series',x=0);
 
\[ y = \frac {c_{2} x^{{3}/{2}} \left (1-\frac {2}{5} x +\frac {2}{35} x^{2}-\frac {4}{945} x^{3}+\frac {2}{10395} x^{4}-\frac {4}{675675} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{1} \left (1+2 x -2 x^{2}+\frac {4}{9} x^{3}-\frac {2}{45} x^{4}+\frac {4}{1575} x^{5}+\operatorname {O}\left (x^{6}\right )\right )}{x} \]

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 84

AsymptoticDSolveValue[2*x^2*D[y[x],{x,2}]+3*x*D[y[x],x]+(2*x-1)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \sqrt {x} \left (-\frac {4 x^5}{675675}+\frac {2 x^4}{10395}-\frac {4 x^3}{945}+\frac {2 x^2}{35}-\frac {2 x}{5}+1\right )+\frac {c_2 \left (\frac {4 x^5}{1575}-\frac {2 x^4}{45}+\frac {4 x^3}{9}-2 x^2+2 x+1\right )}{x} \]