45.2.28 problem 28

Internal problem ID [7251]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page 239
Problem number : 28
Date solved : Monday, January 27, 2025 at 02:49:01 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+\frac {3 y^{\prime }}{x}-2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 46

Order:=6; 
dsolve(diff(y(x),x$2)+3/x*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);
 
\[ y = \frac {c_{1} \left (1+\frac {1}{4} x^{2}+\frac {1}{48} x^{4}+\operatorname {O}\left (x^{6}\right )\right ) x^{2}+c_{2} \left (\ln \left (x \right ) \left (\left (-2\right ) x^{2}-\frac {1}{2} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\left (-2+\frac {3}{8} x^{4}+\operatorname {O}\left (x^{6}\right )\right )\right )}{x^{2}} \]

Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 57

AsymptoticDSolveValue[D[y[x],{x,2}]+3/x*D[y[x],x]-2*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {x^4}{48}+\frac {x^2}{4}+1\right )+c_1 \left (\frac {1}{4} \left (x^2+4\right ) \log (x)-\frac {5 x^4+8 x^2-16}{16 x^2}\right ) \]