45.3.6 problem 6

Internal problem ID [7264]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page 250
Problem number : 6
Date solved : Monday, January 27, 2025 at 02:49:15 PM
CAS classification : [_Bessel]

\begin{align*} y^{\prime }+x y^{\prime \prime }+\left (x -\frac {4}{x}\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.005 (sec). Leaf size: 44

Order:=6; 
dsolve(diff(x*diff(y(x),x),x)+(x-4/x)*y(x)=0,y(x),type='series',x=0);
 
\[ y = \frac {c_{1} x^{4} \left (1-\frac {1}{12} x^{2}+\frac {1}{384} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (\ln \left (x \right ) \left (9 x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\left (-144-36 x^{2}+\operatorname {O}\left (x^{6}\right )\right )\right )}{x^{2}} \]

Solution by Mathematica

Time used: 0.010 (sec). Leaf size: 52

AsymptoticDSolveValue[D[x*D[y[x],x],x]+(x-4/x)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {\left (x^2+8\right )^2}{64 x^2}-\frac {1}{16} x^2 \log (x)\right )+c_2 \left (\frac {x^6}{384}-\frac {x^4}{12}+x^2\right ) \]