45.3.22 problem 24

Internal problem ID [7280]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.3.1 page 250
Problem number : 24
Date solved : Monday, January 27, 2025 at 02:49:36 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 34

Order:=6; 
dsolve(x^2*diff(y(x),x$2)+4*x*diff(y(x),x)+(x^2+2)*y(x)=0,y(x),type='series',x=0);
 
\[ y = \frac {c_{1} x \left (1-\frac {1}{6} x^{2}+\frac {1}{120} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (1-\frac {1}{2} x^{2}+\frac {1}{24} x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{x^{2}} \]

Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 40

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]+4*x*D[y[x],x]+(x^2+2)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {x^3}{120}-\frac {x}{6}+\frac {1}{x}\right )+c_1 \left (\frac {x^2}{24}+\frac {1}{x^2}-\frac {1}{2}\right ) \]