45.4.3 problem 11

Internal problem ID [7285]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review exercises. page 253
Problem number : 11
Date solved : Monday, January 27, 2025 at 02:49:41 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} \left (x -1\right ) y^{\prime \prime }+3 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 54

Order:=6; 
dsolve((x-1)*diff(y(x),x$2)+3*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {3}{2} x^{2}+\frac {1}{2} x^{3}+\frac {5}{8} x^{4}+\frac {9}{20} x^{5}\right ) y \left (0\right )+\left (x +\frac {1}{2} x^{3}+\frac {1}{4} x^{4}+\frac {9}{40} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 63

AsymptoticDSolveValue[(x-1)*D[y[x],{x,2}]+3*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {9 x^5}{40}+\frac {x^4}{4}+\frac {x^3}{2}+x\right )+c_1 \left (\frac {9 x^5}{20}+\frac {5 x^4}{8}+\frac {x^3}{2}+\frac {3 x^2}{2}+1\right ) \]