44.1.30 problem 32

Internal problem ID [6905]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Exercises 1.1 at page 12
Problem number : 32
Date solved : Wednesday, March 05, 2025 at 02:50:11 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=-\frac {x}{y} \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 27
ode:=diff(y(x),x) = -x/y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \sqrt {-x^{2}+c_{1}} \\ y &= -\sqrt {-x^{2}+c_{1}} \\ \end{align*}
Mathematica. Time used: 0.082 (sec). Leaf size: 39
ode=D[y[x],x]==-x/y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {-x^2+2 c_1} \\ y(x)\to \sqrt {-x^2+2 c_1} \\ \end{align*}
Sympy. Time used: 0.273 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x/y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {C_{1} - x^{2}}, \ y{\left (x \right )} = \sqrt {C_{1} - x^{2}}\right ] \]