46.1.5 problem 10

Internal problem ID [7295]
Book : ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section : Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.1. page 174
Problem number : 10
Date solved : Monday, January 27, 2025 at 02:49:51 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-y^{\prime }+y x&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 54

Order:=6; 
dsolve(diff(y(x),x$2)-diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{6} x^{3}-\frac {1}{24} x^{4}-\frac {1}{120} x^{5}\right ) y \left (0\right )+\left (x +\frac {1}{2} x^{2}+\frac {1}{6} x^{3}-\frac {1}{24} x^{4}-\frac {1}{30} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 63

AsymptoticDSolveValue[D[y[x],{x,2}]-D[y[x],x]+x*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (-\frac {x^5}{120}-\frac {x^4}{24}-\frac {x^3}{6}+1\right )+c_2 \left (-\frac {x^5}{30}-\frac {x^4}{24}+\frac {x^3}{6}+\frac {x^2}{2}+x\right ) \]