44.1.40 problem 42

Internal problem ID [6915]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Exercises 1.1 at page 12
Problem number : 42
Date solved : Wednesday, March 05, 2025 at 02:50:30 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=y^{2}+2 y-3 \end{align*}

Maple. Time used: 0.013 (sec). Leaf size: 24
ode:=diff(y(x),x) = y(x)^2+2*y(x)-3; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-3 \,{\mathrm e}^{4 x} c_{1} -1}{-1+{\mathrm e}^{4 x} c_{1}} \]
Mathematica. Time used: 0.689 (sec). Leaf size: 40
ode=D[y[x],x]==y[x]^2+2*y[x]-3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {-1-3 e^{4 (x+c_1)}}{-1+e^{4 (x+c_1)}} \\ y(x)\to -3 \\ y(x)\to 1 \\ \end{align*}
Sympy. Time used: 0.459 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**2 - 2*y(x) + Derivative(y(x), x) + 3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {e^{4 C_{1} - 4 x} + 3}{e^{4 C_{1} - 4 x} - 1} \]