46.1.9 problem 14

Internal problem ID [7299]
Book : ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section : Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.1. page 174
Problem number : 14
Date solved : Monday, January 27, 2025 at 02:49:54 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 35

Order:=6; 
dsolve(diff(y(x),x$2)-4*x*diff(y(x),x)+(4*x^2-2)*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1+x^{2}+\frac {1}{2} x^{4}\right ) y \left (0\right )+\left (x +x^{3}+\frac {1}{2} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 34

AsymptoticDSolveValue[D[y[x],{x,2}]-4*x*D[y[x],x]+(4*x^2-2)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {x^5}{2}+x^3+x\right )+c_1 \left (\frac {x^4}{2}+x^2+1\right ) \]