46.2.8 problem 9

Internal problem ID [7311]
Book : ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section : Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended Power Series Method: Frobenius Method page 186
Problem number : 9
Date solved : Monday, January 27, 2025 at 02:50:07 PM
CAS classification : [_Jacobi]

\begin{align*} 2 x \left (x -1\right ) y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.009 (sec). Leaf size: 26

Order:=6; 
dsolve(2*x*(x-1)*diff(y(x),x$2)-(x+1)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
 
\[ y = c_{1} \sqrt {x}\, \left (1+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (1+x +\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 18

AsymptoticDSolveValue[2*x*(x-1)*D[y[x],{x,2}]-(x+1)*D[y[x],x]+y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \sqrt {x}+c_2 (x+1) \]