44.2.3 problem 3

Internal problem ID [6935]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Section 1.2 Initial value problems. Exercises 1.2 at page 19
Problem number : 3
Date solved : Wednesday, March 05, 2025 at 02:53:04 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }+2 x y^{2}&=0 \end{align*}

With initial conditions

\begin{align*} y \left (2\right )&={\frac {1}{3}} \end{align*}

Maple. Time used: 0.069 (sec). Leaf size: 11
ode:=diff(y(x),x)+2*x*y(x)^2 = 0; 
ic:=y(2) = 1/3; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {1}{x^{2}-1} \]
Mathematica. Time used: 0.132 (sec). Leaf size: 12
ode=D[y[x],x]+2*x*y[x]^2==0; 
ic={y[2]==1/3}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{x^2-1} \]
Sympy. Time used: 0.231 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x)**2 + Derivative(y(x), x),0) 
ics = {y(2): 1/3} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {1}{x^{2} - 1} \]