46.4.8 problem 8

Internal problem ID [7335]
Book : ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section : Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.5. Bessel Functions Y(x). General Solution page 200
Problem number : 8
Date solved : Monday, January 27, 2025 at 02:50:36 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} y^{\prime \prime }+k^{2} x^{4} y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 15

Order:=6; 
dsolve(diff(y(x),x$2)+k^2*x^4*y(x)=0,y(x),type='series',x=0);
 
\[ y = y \left (0\right )+y^{\prime }\left (0\right ) x +O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 10

AsymptoticDSolveValue[D[y[x],{x,2}]+k^2*x^4*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 x+c_1 \]