46.5.10 problem 20

Internal problem ID [7346]
Book : ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section : Chapter 5. Series Solutions of ODEs. REVIEW QUESTIONS. page 201
Problem number : 20
Date solved : Monday, January 27, 2025 at 02:50:48 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }+y^{\prime }-y x&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.005 (sec). Leaf size: 32

Order:=6; 
dsolve(x*diff(y(x),x$2)+diff(y(x),x)-x*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (c_{2} \ln \left (x \right )+c_{1} \right ) \left (1+\frac {1}{4} x^{2}+\frac {1}{64} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\left (-\frac {1}{4} x^{2}-\frac {3}{128} x^{4}+\operatorname {O}\left (x^{6}\right )\right ) c_{2} \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 60

AsymptoticDSolveValue[x*D[y[x],{x,2}]+D[y[x],x]-x*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {x^4}{64}+\frac {x^2}{4}+1\right )+c_2 \left (-\frac {3 x^4}{128}-\frac {x^2}{4}+\left (\frac {x^4}{64}+\frac {x^2}{4}+1\right ) \log (x)\right ) \]