44.3.8 problem 14

Internal problem ID [6989]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Review problems at page 34
Problem number : 14
Date solved : Wednesday, March 05, 2025 at 04:01:22 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=y \left (y-3\right ) \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 17
ode:=diff(y(x),x) = y(x)*(-3+y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {3}{1+3 \,{\mathrm e}^{3 x} c_{1}} \]
Mathematica. Time used: 0.168 (sec). Leaf size: 29
ode=D[y[x],x]==y[x]*(y[x]-3); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {3}{1+e^{3 (x+c_1)}} \\ y(x)\to 0 \\ y(x)\to 3 \\ \end{align*}
Sympy. Time used: 0.394 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((3 - y(x))*y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {3 C_{1}}{C_{1} - e^{3 x}} \]