44.4.13 problem 4 (a)

Internal problem ID [7026]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.1 Solution curves without a solution. Exercises 2.1 at page 44
Problem number : 4 (a)
Date solved : Wednesday, March 05, 2025 at 04:02:46 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\sin \left (x \right ) \cos \left (y\right ) \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \end{align*}

Maple. Time used: 0.703 (sec). Leaf size: 88
ode:=diff(y(x),x) = sin(x)*cos(y(x)); 
ic:=y(0) = 1; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \arctan \left (\frac {\sin \left (1\right ) {\mathrm e}^{2-2 \cos \left (x \right )}+{\mathrm e}^{2-2 \cos \left (x \right )}+\sin \left (1\right )-1}{\sin \left (1\right ) {\mathrm e}^{2-2 \cos \left (x \right )}+{\mathrm e}^{2-2 \cos \left (x \right )}-\sin \left (1\right )+1}, \frac {2 \,{\mathrm e}^{1-\cos \left (x \right )} \cos \left (1\right )}{\sin \left (1\right ) {\mathrm e}^{2-2 \cos \left (x \right )}+{\mathrm e}^{2-2 \cos \left (x \right )}-\sin \left (1\right )+1}\right ) \]
Mathematica. Time used: 0.727 (sec). Leaf size: 24
ode=D[y[x],x]==Sin[x]*Cos[y[x]]; 
ic={y[0]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to 2 \arctan \left (\tanh \left (\text {arctanh}\left (\tan \left (\frac {1}{2}\right )\right )-\frac {\cos (x)}{2}+\frac {1}{2}\right )\right ) \]
Sympy. Time used: 1.723 (sec). Leaf size: 97
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-sin(x)*cos(y(x)) + Derivative(y(x), x),0) 
ics = {y(0): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \pi - \operatorname {asin}{\left (\frac {e^{2 \cos {\left (x \right )}} + \frac {e^{2} \sin {\left (1 \right )} + e^{2}}{-1 + \sin {\left (1 \right )}}}{- e^{2 \cos {\left (x \right )}} + \frac {e^{2} \sin {\left (1 \right )} + e^{2}}{-1 + \sin {\left (1 \right )}}} \right )}, \ y{\left (x \right )} = \operatorname {asin}{\left (\frac {e^{2 \cos {\left (x \right )}} + \frac {e^{2} \sin {\left (1 \right )} + e^{2}}{-1 + \sin {\left (1 \right )}}}{- e^{2 \cos {\left (x \right )}} + \frac {e^{2} \sin {\left (1 \right )} + e^{2}}{-1 + \sin {\left (1 \right )}}} \right )}\right ] \]